Chapter 35: Electric Circuits

(9) 3-Way Switch

Purpose

To explore ways to turn a lightbulb on or off from either one of two switches.

Required Equipment/Supplies

2.5-V DC lightbulb with socket

connecting wire
2 single-pole double-throw switches
$21.5-\mathrm{V}$ size-D dry cells connected in series in a holder

Discussion

Frequently, multistory homes have hallways with ceiling lights. It is convenient if you can turn a hallway light on or off from a switch located at either the top or bottom of the staircase. Each switch should be able to turn the light on or off, regardless of the previous setting of either switch. The same arrangement is often adopted in a room with two doors. In this activity, you will see how simple, but tricky, such a common circuit really is!

Procedure

Step 1: Examine a 3 -volt battery (formed from two 1.5 -volt dry cells with the positive terminal of one connected to the negative terminal of the other). Connect a wire from the positive terminal of the battery to the center terminal of a single-pole double-throw switch. Connect a wire from the negative terminal of the same battery to one terminal of the lightbulb socket. Connect the other terminal of the lightbulb socket to the center terminal of the other switch. bulb turns on or off from either switch. That is, when both switches are closed in either direction, moving either switch from one side to the other will always turn an unlit bulb on or a lit bulb off.

Step 3: Draw a simple circuit diagram of your successful circuit.

Single Pole
Double-Throw Switch
Devise working circuit.

Diagram 3-way switch

Step 4: The polarity of a battery can be reversed in a circuit by switching the connections to the positive and negative terminals. Predict whether your successful circuit will work if you reverse the polarity of the battery.
prediction: \qquad
Now reverse the polarity and record the result.
result: \qquad
Step 5: Predict whether your successful circuit will work if you reconnect the circuit so that the battery is where the lightbulb is now, and vice versa.
prediction: \qquad
Now try it and record your results.
results: \qquad

Analysis

An ordinary switch has an "on" setting, which closes the circuit at that point, and an "off" setting, which opens the circuit at that point. On the switches you used in this activity, what function do the two "closed" settings on each switch have? Can either setting keep the circuit open independently of how the other switch is set?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

