"
 Merrily We Roll Along!

Purpose

To investigate the relationship between distance and time for a ball rolling down an incline

Required Equipment/Supplies

2-meter ramp
steel ball bearing or marble
wood block
stopwatch
tape
meterstick
protractor
overhead transparencies

Optional Equipment/Supplies

3 photogates with timing system
6 ring stands with clamps

Discussion

Measurement of the motion of a freely falling object is difficult because the speed increases rapidly. In fact, it increases by nearly $10 \mathrm{~m} / \mathrm{s}$ every second. The distance that the object falls becomes very large, very quickly. Galileo slowed down the motion by using inclined planes. The component of gravity acting along the direction of the inclined plane is less than the full force of gravity that acts straight down-so the change of speed happens more slowly and is easier to measure. The less steep the incline, the smaller the acceleration. The physics of free fall can be understood by first considering the motion of a ball on an inclined plane.

This experiment will require you to make many timing measurements using a stopwatch or, if available, a computer. If you use a stopwatch, develop good timing techniques so as to minimize errors due to reaction time. The computer-photogate system is a powerful stopwatch because it not only eliminates reaction time, but can be used in a variety of timing modes. Since the diameter of the ball can be measured directly, its speed can be found by dividing the diameter by the amount

Set up ramp.

of time it takes to pass through the beam striking the light probe. Strictly speaking, since the ball's speed is increasing as it rolls through the light beam, it exits the beam slightly faster than it enters the beam. The width of the ball divided by the time the ball eclipses the light beam gives the average speed of the ball through the light beam, not the instantaneous speed. But once the ball has picked up speed partway down the incline, its percentage change in speed is small during the short time that it eclipses the light. Then its measured average speed is practically the same as its instantaneous speed.

Procedure

Step 1: Set up a ramp with the angle of the incline at about 10° to the horizontal, as shown in Figure A.

Fig. A
Divide ramp into equal parts.
Step 2: Divide the ramp's length into six equal parts and mark the six positions on the board with pieces of tape. These positions will be your release points. Suppose your ramp is 200 cm long. Divide 200 cm by 6 to get 33.33 cm per section. Mark your release points every 33.33 cm from the bottom. Place a stopping block at the bottom of the ramp to allow you to hear when the ball reaches the bottom.

Distance (cm)	Time (s)			
	Trial 1	Trial 2	Trial 3	Average

Time the ball down the incline.

Step 3: Use either a stopwatch or a photogate to measure the time it takes the ball to roll down the ramp from each of the six points. (If you use the computer, position one photogate at the release point and the other at the bottom of the ramp.) Use a ruler or a pencil to hold the ball at its starting position, and then pull it away quickly parallel to the incline to release the ball uniformly. Do several practice runs with the help of your partners to minimize error. Make at least three timings from each position, and record each time and the average of the three times in Data Table A.

Step 4: Graph your data, plotting distance (vertical axis) vs. average time (horizontal axis) on an overhead transparency. Use the same scales
on the coordinate axes as the other groups in your class so that you can compare results.

Step 5: Repeat Steps 2-4 with the incline set at an angle 5° steeper. Record your data in Data Table B. Graph your data as in Step 4.

Distance (cm)	Time (s)				
	Trial 1	Trial 2	Trial 3	Average	

Change the tilt of the ramp and repeat.

Data Table B

1. What is acceleration?
\qquad
\qquad
2. Does the ball accelerate down the ramp? Cite evidence to defend your answer.
\qquad
\qquad
3. What happens to the acceleration if the angle of the ramp is increased?
\qquad
\qquad

Step 6: Remove the tape marks and place them at $10 \mathrm{~cm}, 40 \mathrm{~cm}, 90 \mathrm{~cm}$, and 160 cm from the stopping block, as in Figure B. Set the incline of the ramp to be about 10°.

Reposition the tape markers on ramp.

Fig. B

Step 7: Measure the time it takes for the ball to roll down the ramp from each of the four release positions. Make at least three timings from each of the four positions and record each average of the three times in Column 2 of Data Table C.

Data Table C

Graph data.

Study your data.

Column 1	Column 2				Column 3	Column 4
Distance Traveled (cm)	Rolling Time (s)				Time Differences Between Successive Intervals (s)	Time in Trial 1
Trial 2	Trial 3	Average	Natural Units"			
10				$t_{1}=$		1
40				$t_{2}=$	$t_{2}-t_{1}=$	
90				$t_{3}=$	$t_{3}-t_{2}=$	
160				$t_{4}=$	$t_{4}-t_{3}=$	

Step 8: Graph your data, plotting distance (vertical axis) vs. time (horizontal axis) on an overhead transparency. Use the same coordinate axes as the other groups in your class so that you can compare results.

Step 9: Look at the data in Column 2 a little more closely. Notice that the difference between t_{2} and t_{1} is approximately the same as t_{1} itself. The difference between t_{3} and t_{2} is also nearly the same as t_{1}. What about the difference between t_{4} and t_{3} ? Record these three time intervals in Column 3 of Data Table C.

Step 10: If your values in Column 3 are slightly different from one another, find their average by adding the four values and dividing by 4 . Do as Galileo did in his famous experiments with inclined planes and call this average time interval one "natural" unit of time. Note that t_{1} is already listed as one "natural" unit in Column 4 of Table C. Do you see that t_{2} will equal-more or less-two units in Column 4? Record this, and also t_{3} and t_{4} in "natural" units, rounded to the nearest integer. Column 4 now contains the rolling times as multiples of the "natural" unit of time.
4. What happens to the speed of the ball as it rolls down the ramp? Does it increase, decrease, or remain constant? What evidence can you cite to support your answer?

Step 11: Overlay your transparency graph with other groups in your class and compare them.
5. Do balls of different mass have different accelerations?

Step 12: Investigate more carefully the distances traveled by the rolling ball in Table D. Fill in the blanks of Columns 2 and 3 to see the pattern.

Column 1	Column 2	Column 3
Distance Traveled (cm)	First Four Integers	Squares of First Four Integers
10	1	1
40	2	4
90	3	9
160		

Data Table D

6. What is the relation between the distances traveled and the squares of the first four integers?
\qquad
\qquad
Step 13: You are now about to make a very big discovery-so big, in fact, that Galileo is still famous for making it first! Compare the distances with the times in the fourth column of Data Table C. For example, t_{2} is two "natural" time units and the distance rolled in time t_{2} is 2^{2}, or 4 , times as great as the distance rolled in time t_{1}.
7. Is the distance the ball rolls proportional to the square of the "natural" unit of time?
\qquad
\qquad
The sizes of your experimental errors may help you appreciate Galileo's genius as an experimenter. Remember, there were no stopwatches 400 years ago! He used a "water clock," in which the amount of water that drips through a small opening serves to measure the time. Galileo concluded that the distance d is proportional to the square of the time t.

$$
d \sim t^{2}
$$

Step 14: Repeat Steps 6-10 with the incline set at an angle 5° steeper.
Increase tilt of ramp. Record your data in Data Table E.
8. What happens to the acceleration of the ball as the angle of the ramp is increased?
\qquad
\qquad

Data Table E

Set up computer with photogates.

Column 1	Column 2				Column 3	Column 4
Distance Traveled (cm)	Rolling Time (s)				Time Differences Between Successive Intervals (s)	Time in Trial 1
Trial 2	Trial 3	Average	Natural Units"			
10				$t_{1}=$		1
40				$t_{2}=$	$t_{2}-t_{1}=$	
90				$t_{3}=$	$t_{3}-t_{2}=$	
160				$t_{4}=$	$t_{4}-t_{3}=$	

9. Instead of releasing the ball along the ramp, suppose you simply dropped it. It would fall about 5 meters during the first second. How far would it freely fall in 2 seconds? 5 seconds? 10 seconds?
\qquad
\qquad
\qquad
\qquad

Going Further: Investigating the Speed of the Ball Down the Ramp

You can use the computer to investigate the speed the ball acquires rolling down the ramp. This can be accomplished several different ways using light probes. One way is to position three photogates 10 cm , 40 cm , and 90 cm from the release point on the ramp. The speed of the ball as it passes a photogate can be determined by measuring the time interval between when the front of the ball enters the light beam and the back of the ball leaves it. The distance traveled during this time interval is just the diameter of the ball. Measure the diameter of the ball.

> diameter of ball =
\qquad
With the incline set at an angle of about 10°, measure the respective eclipse times for each photogate, and record your timings in Data Table F. To approximate the instantaneous speed of the ball at the three positions, divide the diameter of the ball by the eclipse time. Record the speeds in the table. Also record the average rolling time it took for the ball to travel each distance from the release point, from the information recorded in Data Table C.

Make a plot of instantaneous speed (vertical axis) vs. rolling time (horizontal axis).

Repeat with the ramp at an angle 5° steeper. Use the rolling times recorded in Data Table E.

\[\)| Total Distance
 Traveled
 (cm) | Eclipse
 Time
 (s) | | |
| :---: | :---: | :---: | :---: |
| First
 Angle | Instantaneous
 Speed
 (cm/s) | Average
 RollingTime
 (s) | |
| 10 | | | |
| 40 | | | |
| 90 | | | |
| Second | | | |
| Angle | | | |\(\left\{\begin{array}{cccc|}\hline 10 \& \& \&

\hline 40 \& \& \&

\hline 90 \& \& \&

\hline\end{array}\right.
\]

Data Table F
10. How do the slopes of the lines in your graphs of speed vs. time relate to the acceleration of the ball down the ramp?
\qquad
\qquad
\qquad
11. When you determined the speed of the ball with the photogates, were you really determining instantaneous speed? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
12. As the angle of the ramp increased, the acceleration of the ball increased. Do you think there is an upper limit to the acceleration of the ball down the ramp? What is it?

