Purpose

To understand the principles of projectile motion by analyzing the physics of home runs

Required Equipment/Supplies

graph paper, pencil, protractor

colored pencils
coffee filters

Optional Equipment/Supplies

Conceptual Physics Alive! The San Francisco Years DVD set

squeeze foam rockets
video camera and monitor
computer with video capturing software
spreadsheet software
VideoPoint software or equivalent

Discussion

Baseball is not only a game that's fun to play and watch, it also illustrates some simple and complex physics principles beautifully, are including force, velocity, acceleration, vectors, projectile motion, air friction, and rotational and fluid mechanics.

A home run is one of the most dramatic and exciting things in all of sports-partly because it's so difficult to do, but also because of the speed of the hit ball and its trajectory. Some home runs arch high into the sky, while others are nearly line drives, almost parallel to the field. What makes each home run so different? Fortunately, comprehending the basic physics of a home run is not nearly as difficult as it is to hit one! Understanding the underlying physics of baseball adds to the beauty and appreciation of the game.

In the lab Bull's Eye, the range of a projectile is calculated by measuring the speed of the ball at the top as it left the ramp using the formula v_{x} / t and the time ($t_{\text {top }}$) it took to reach the bottom from the formula $1 / 2 g t^{2}$. Thus, the distance to the top of the can was simply the product of the speed and the time, $v_{x} t$. A home run is the "mirror image" of a Bull's-Eye-it's simply two Bull's-Eye trajectories put back to back.

There's no practical way to measure the speed of the home-run ball at the top of its path. Instead, we'll look at the initial speed of the ball off the bat (not to be confused with the speed of the bat as it hits the ball). We will separate this speed into its horizontal and vertical components. Since the horizontal and vertical motions of the ball are independent of each other, we can perform the calculations on each component separately to figure out the maximum height of the ball and where it's going to land (that is, its range).

If you toss a ball straight up into the air, it reaches its maximum height when its speed is zero. So the time it takes to get to the top is simply the initial speed divided by the acceleration of gravity, g (since $v_{y}=g t$ then $\left.t_{\mathrm{top}}=v_{y} / \mathrm{g}\right)$. For a ball hit at an angle, we use the vertical component of the initial velocity to find the time it takes to reach the top $\left(t_{\text {top }}\right)$. The time to reach the maximum height $\left(t_{\text {top }}\right)$ is computed by dividing the initial vertical velocity by the acceleration of gravity, g. Assuming the trajectory of the ball is symmetric (which happens when there's no air resistance), the total time ($t_{\text {total }}$) the ball is in the air (the ball's hang time) is simply twice the time it takes to get to the top ($2 t_{\text {top }}$). The range of the ball is the product of the horizontal component of the initial speed v_{x} and the hang time ($2 t_{\text {top }}$).

Part A: Resolving Velocity Vectors Into Components

Procedure

Step 1: To get an idea about the relative importance of the initial speed and the direction the ball is struck, draw velocity vectors that represent the ball's speed just as it leaves the bat at various angles. Suppose a slugger strikes a ball so that it leaves the bat at $180 \mathrm{ft} / \mathrm{s}$. Use the scale 1 cm $=10 \mathrm{ft} / \mathrm{s}$ to make velocity vectors. Draw all the vectors so they all have their tails on the same point, the first vector at 0°, the second vector at 15°, etc., up to 90°. To help make each vector clearly visible, draw each vector using a different colored pencil.

Step 2: Now sketch the components of each velocity vector using dashed lines. Remember, this velocity vector represents the initial velocity of the ball. Remember, just as in the lab Bull's Eye, the vertical components will decrease due to the acceleration of gravity whereas the horizontal ones won't.

Step 3: Make a table of v_{x} and v_{y} for the various angles.

Analysis

1. Which ball goes the highest?
\qquad
\qquad
2. At what angle is the ball going fastest horizontally?
\qquad
\qquad
3. At what angle is the horizontal component the same as the vertical component?
\qquad
\qquad
4. At what angle does the ball go farthest? Why?
\qquad
\qquad
\qquad

Part B: Dissecting a Homer

Procedure

Let's analyze some of the physics involved when a batter hits a homer. First, we need to make some assumptions. To keep things simple, we will neglect the effects of air friction or drag. Suppose the batter hits a $95-\mathrm{mi} / \mathrm{h}$ fastball at $120 \mathrm{mi} / \mathrm{h}$ at an angle of 38°. Let's do some calculations and see how high the ball goes and where it lands. To make this problem more familiar, we'll use units of feet and feet/second instead of
meters and meters/second. To convert mi / h to ft / s, recall that there are 5280 feet in a mile and 3600 seconds in an hour. Therefore, $1 \mathrm{mi} / \mathrm{h}=5280 \mathrm{ft} / 3600 \mathrm{~s}$ or approximately $1.47 \mathrm{ft} / \mathrm{s}$.

Step 4: Convert the $120 \mathrm{mi} / \mathrm{h}$ into ft / s. Use the conversion factor of $1 \mathrm{mi} / \mathrm{h}=1.47 \mathrm{ft} / \mathrm{s}$. Show your conversion and record your result.

$$
120 \mathrm{mi} / \mathrm{h}=(120 \mathrm{mi} / \mathrm{h}) \times \frac{(1.47 \mathrm{ft} / \mathrm{s})}{(\mathrm{mi} / \mathrm{h})}=\ldots \mathrm{ft} / \mathrm{s}
$$

Step 5: Choose a scale (such as a $1 \mathrm{~cm}=10 \mathrm{ft} / \mathrm{s}$) so that your velocity vector will occupy a large portion of your graph paper. Write down the scale you choose.
scale: \qquad
Then use your scale to calculate the length of the velocity vector that represents the initial velocity of the ball. Record your calculations.

$$
\text { length of velocity vector }=
$$

Step 6: Use a protractor to draw the initial velocity vector on your graph paper. Then carefully sketch the horizontal and vertical components of the initial velocity using dashed lines.

Step 7: Measure the length of the horizontal components v_{x} of the ball's initial velocity. Then convert this measurement into ft / s. Record your measurement and calculation.

$$
v_{x}=\ldots \quad \mathrm{ft} / \mathrm{s}
$$

Step 8: Repeat this procedure to find the ball vertical component of the ball's initial velocity.

$$
v_{y}=\ldots \quad \mathrm{ft} / \mathrm{s}
$$

Analysis

Now that we know the ball's initial horizontal and vertical velocities for both the pitch and the hit, we can calculate some interesting things about the ball's trajectory.

The Pitch:

5. How long does it take a ball going $95 \mathrm{mi} / \mathrm{h}$ to reach home plate? The distance from the pitcher's mound to home plate is 60.5 ft . Show your calculations.
6. Assuming the ball is pitched parallel to the ground, how far does it fall due to gravity by the time it reaches the plate? Show your calculations.

The Homer:

7. How long does it take for the ball hit at $120 \mathrm{mi} / \mathrm{h}$ at the 38° angle to reach its maximum height $\left(t_{\text {top }}\right)$?
\qquad
8. How long is the ball in the air? (That is, what is the hang time? Remember, hang time $=2 t_{\text {top }}$.)
\qquad
9. What is the maximum height of the ball?
\qquad
10. How far does the ball travel?
\qquad
11. What are the two most important factors that determine how far a batted ball will go?
\qquad
\qquad
12. Do your answers seem reasonable? Can the effects of air friction be neglected?
\qquad
\qquad
13. Why do baseballs travel farther at Coors Field in Denver, Colorado (which is at an altitude of 5000 ft)?
\qquad
\qquad
14. Why are most homers not hit at angles greater than 50° ?

Going Further: The Effects of Friction

Step 9: Try to launch the foam rocket with the same force each time. This may take several trials to become a consistent "launcher." Launch a foam pop rocket at various angles. Devise a technique for estimating the angle the rocket was launched.

Step 10: Using a video or camcorder, make a recording of the rocket's trajectory when launched at the angle that results in the maximum range. Position a meterstick vertically in the background to give you a way to measure the height of the rocket in the video. It is helpful to choose a plain background to make viewing the rocket's path easier.

Step 11: After obtaining a video of the rocket, import the video clip into a computer program using video capturing software. Play it back onto a monitor frame by frame. Most video cameras take a frame every $1 / 30^{\text {th }}$ of a second. If available use VideoPoint software; it will make analyzing the trajectory very easy.

Step 12: Construct a data table of the rocket's height vs. time. Record the data collected from the video analysis of the rocket launch. Plot your data as a line graph on graph paper, or alternatively, use spreadsheet software on a computer to produce the data table and graph. Print your data table and graph. You should be able to produce a smooth curve of the trajectory of the ball.
15. What angle results in the greatest horizontal range?
16. Is the trajectory of the rocket a symmetric parabola?
17. What is causing the trajectory to diverge from a parabola?

Step 13: View the video of a professional baseball player hitting home runs. Observe the angle of the ball as it leaves the bat. In the absence of friction, the maximum range of a projectile is when it is hit at 45°.

Analysis

18. Are most of the homers hit at or near 45° ?
19. You'll notice that most of the homers hit are at 45° to the horizontal or less-sometimes much less. Some are barely 25°. Explain.

\qquad
\qquad
20. In the lab What a Drag, you tested two models of friction: one in which the friction varies as the speed and another in which the friction varies as the square of the speed. What were your results from the lab? (If you have not done the lab, this would be an excellent time to do so!) Summarize your results below.
