\qquad
\qquad

Chapter 26 Sound

Relating Properties of Sound

A musical note has a frequency of 264 Hz . What is the wavelength of the sound if it moves with a speed of $345 \mathrm{~m} / \mathrm{s}$?

1. Read and Understand

What information are you given?
speed of the sound wave $=v=345 \mathrm{~m} / \mathrm{s}$
frequency of the sound wave $=f=264 \mathrm{~Hz}$

2. Plan and Solve

What unknown are you trying to calculate?
wavelength $=\lambda$
What relationship can you use to find the unknown?
wave speed $=$ wavelength \times frequency: $v=\lambda f$
Rearrange the equation to solve for the unknown variable.
$\lambda=\frac{v}{f}$
Replace each variable with its known value.
$\lambda=\frac{345 \mathrm{~m} / \mathrm{s}}{264 \mathrm{~Hz}}=1.3 \mathrm{~m}$

3. Look Back and Check

Is your answer reasonable?
A speed of $345 \mathrm{~m} / \mathrm{s}$ indicates that the medium through which the sound is traveling is probably air. A sound with a frequency of 264 Hz is an audible sound. The wavelength of 1.3 m is reasonable for an audible sound traveling through air.
Math Practice
On a separate sheet of paper, solve the following problems.

1. A dolphin emits a sound with a frequency of $1.2 \times 10^{5} \mathrm{~Hz}$. What is the wavelength of this sound as it moves through seawater with a speed of $1530 \mathrm{~m} / \mathrm{s}$?
2. Sound with a wavelength of 5.8 m moves through a material at a speed of $1508 \mathrm{~m} / \mathrm{s}$. What is the frequency of the sound?
3. Sound with a frequency of 468 Hz and a wavelength of 4.7 m moves through a material. What is the speed of the sound?
