\qquad
\qquad
\qquad

Concept-Development Practice Page

9-3

Momentum and Energy

Bronco Brown wants to put $F t=\Delta m v$ to the test and try bungee jumping. Bronco leaps from a high cliff and experiences free fall for 3 seconds. Then the bungee cord begins to stretch, reducing his speed to zero in 2 seconds. Fortunately, the cord stretches to its maximum length just short of the ground below.

Fill in the blanks. Bronco's mass is 100 kg . Acceleration of free fall is $10 \mathrm{~m} / \mathrm{s}^{2}$.

Express values in SI units (distance in m , velocity in m / s, momentum in $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$, impulse in $\mathrm{N} \cdot \mathrm{s}$, and deceleration in $\mathrm{m} / \mathrm{s}^{2}$).

The 3-s free-fall distance of Bronco just before the bungee cord begins to stretch
$=$ \qquad
$\Delta m v$ during the 3-s interval of free fall $=$ \qquad
$\Delta m v$ during the 2-s interval of slowing down
$=$ \qquad
Impulse during the 2-s interval of slowing down
$=$ \qquad .

Average force exerted by the cord during the 2-s interval of slowing down
$=$ \qquad
How about work and energy? How much KE does Bronco have 3 s after his jump?

How much does gravitational PE decrease during this 3 s ?

What two kinds of PE are changing during the slowing-down interval?

Energy and Momentum

A compact car and a full-size sedan are initially at rest on a horizontal parking lot at the edge of a steep cliff. For simplicity, we assume that the sedan has twice as much mass as the compact car. Equal constant forces are applied to each car and they accelerate across equal distances (we ignore the effects of friction). When they reach the far end of the lot the force is suddenly removed, whereupon they sail through the air and crash to the ground below. (The cars are beat up to begin with, and this is a scientific experiment!)

4. Which car has the larger impulse imparted to it by the applied force? Defend your answer.
5. Which car has the greater momentum at the edge of the cliff? Defend your answer.
6. Which car has the greater work done on it by the applied force? Defend your answer in terms of the distance traveled.

8. Which car spends more time in the air, from the edge of the cliff to the ground below? \qquad
9. Which car lands farthest horizontally from the edge of the cliff onto the ground below? \qquad
10. Challenge: Suppose the slower car crashes a horizontal distance of 10 m from the ledge. Then at what horizontal distance does the faster car hit?
\qquad
\qquad

CONCEPTUAL PHYSICS

