\qquad
\qquad

Concept-Development Practice Page

Newton's Third Law

1. In the example below, the action-reaction pair is shown by the arrows (vectors), and the actionreaction described in words. In (a) through (g) draw the other arrow (vector) and state the reaction to the given action. Then make up your own example in (h).

Example:

Fist hits wall
Wall hits fist

Bat hits ball
c. \qquad
© Pearson Education, Inc., or its affiliate(s). All rights reserved.
2. Draw arrows to show the chain of at least six pairs of action-reaction forces below.

Head bumps ball
a.

Hand touches nose
d. \qquad

Compressed air pushes balloon surface outward

Windshield hits bug
b. \qquad

Hand pulls on flower
e. \qquad
h. \qquad
g. \qquad
\qquad
\qquad

3. Nellie Newton holds an apple weighing 1 newton at rest on the palm of her hand. The force vectors shown are the forces that act on the apple.
a. To say the weight of the apple is 1 N is to say that a downward gravitational force of 1 N is exerted on the apple by (Earth) (her hand).
b. Nellie's hand supports the apple with normal force \mathbf{n}, which acts in a direction opposite to \mathbf{W}. We can say \mathbf{n} (equals W) (has the same magnitude as \mathbf{W}).

c. Since the apple is at rest, the net force on the apple is (zero) (nonzero).
d. Since \mathbf{n} is equal and opposite to \mathbf{W}, we (can) (cannot) say that \mathbf{n} and \mathbf{W} comprise an action-reaction pair. The reason is because action and reaction always (act on the same object) (act on different objects), and here we see \mathbf{n} and \mathbf{W} (both acting on the apple) (acting on different objects).
e. In accord with the rule, "If ACTION is A acting on B, then REACTION is B acting on A," if we say action is Earth pulling down on the apple, reaction is (the apple pulling up on Earth) (\mathbf{n}, Nellie's hand pushing up on the apple).
f. To repeat for emphasis, we see that \mathbf{n} and \mathbf{W} are equal and opposite to each other (and comprise an action-reaction pair) (but do not comprise an action-reaction pair).

g. Another pair of forces is \mathbf{n} [shown] and the downward force of the apple against Nellie's hand [not shown]. This force pair (is) (isn't) an action-reaction pair.
h. Suppose Nellie now pushes upward on the apple with a force of 2 N . The apple (is still in equilibrium) (accelerates upward), and compared to \mathbf{W}, the magnitude of \mathbf{n} is (the same) (twice) (not the same, and not twice).
i. Once the apple leaves Nellie's hand, \mathbf{n} is (zero) (still twice the magnitude of \mathbf{W}), and the net force on the apple is (zero) (only \mathbf{W}) (still $\mathbf{W}-\mathbf{n}$, which is a negative force).

CONCEPTUAL PHYSICS

