\qquad
\qquad

Concept-Development Practice Page

Force and Acceleration

1. Skelly the skater, total mass 25 kg , is propelled by rocket power.
a. Complete Table I (neglect resistance)
b. Complete Table II for a constant $50-\mathrm{N}$ resistance.

FORCE	ACCELERATION
100 N	
200 N	
	$10 \mathrm{~m} / \mathrm{s}^{2}$

FORCE	ACCELERATION
50 N	$0 \mathrm{~m} / \mathrm{s}^{2}$
100 N	
200 N	

2. Block A on a horizontal friction-free table is accelerated by a force from a string attached to Block B. B falls vertically and drags A horizontally. Both blocks have the same mass m. (Neglect the string's mass.)

Circle the correct answers.
a. The mass of the system $(\mathrm{A}+\mathrm{B})$ is $(m)(2 m)$.
b. The force that accelerates $(\mathrm{A}+\mathrm{B})$ is the weight of $(\mathrm{A})(\mathrm{B})(\mathrm{A}+\mathrm{B})$.
c. The weight of B is $(\mathrm{mg} / 2)(\mathrm{mg})(2 \mathrm{mg})$.
d. Acceleration of $(\mathrm{A}+\mathrm{B})$ is (less than $g)(\mathrm{g})($ more than $g)$.
e. Use $a=$ to show the acceleration of $(\mathrm{A}+\mathrm{B})$ as a fraction of g. \qquad

3. Suppose A is still a $1-\mathrm{kg}$ block, but B is a low-mass feather (or a coin).

4. Suppose A is a feather or coin, and B has a mass of 1 kg .

a. The acceleration of $(A+B)$ here is (close to zero) (close to g).
b. In this case the acceleration of B is (practically that of free fall) (constrained).
c. When the ball reaches the bottom and rolls along the smooth level surface it (continues to accelerate) (does not accelerate).

CONCEPTUAL PHYSICS

