\qquad

Chapter 5 Projectile Motion

Vector Addition and Resolution

A small rubber-band-powered airplane can fly at a speed of $2.5 \mathrm{~m} / \mathrm{s}$ in still air. If it flies into a $0.5 \mathrm{~m} / \mathrm{s}$ headwind, what is its speed relative to the ground? What is its speed in a tailwind with the same magnitude?

1. Read and Understand

What information are you given?
Speed in still air $=2.5 \mathrm{~m} / \mathrm{s}$
Speed of headwind $=0.5 \mathrm{~m} / \mathrm{s}$
Speed of tailwind $=0.5 \mathrm{~m} / \mathrm{s}$

2. Plan and Solve

What unknown are you trying to calculate?
Speed relative to ground into headwind =?
Speed relative to ground with tailwind $=$?
What formula contains the given quantities and the unknown?
Into headwind:
Speed relative to ground $=$ speed in still air - speed of headwind
$=2.5 \mathrm{~m} / \mathrm{s}-0.5 \mathrm{~m} / \mathrm{s}$
$=2.0 \mathrm{~m} / \mathrm{s}$
With tailwind:
Speed relative to ground $=$ speed in still air + speed of tailwind

$$
=2.5 \mathrm{~m} / \mathrm{s}+0.5 \mathrm{~m} / \mathrm{s}
$$

$$
=3.0 \mathrm{~m} / \mathrm{s}
$$

3. Look Back and Check

Is your answer reasonable?
Yes, a headwind would cause the airplane's speed to decrease, while a tailwind would cause the speed to increase.

Math Practice

On a separate sheet of paper, solve the following problems.

1. A stream flows with a speed of $3.0 \mathrm{~m} / \mathrm{s}$ relative to the shore. A kayaker paddles downstream with a speed of $1.5 \mathrm{~m} / \mathrm{s}$ relative to the stream.
What is the kayaker's speed relative to the shore?
2. A train travels at a speed of $25.0 \mathrm{~m} / \mathrm{s}$ relative to the ground. If you walk to the back of the train at a speed of $0.5 \mathrm{~m} / \mathrm{s}$ relative to the train, what is your speed relative to the ground?
\qquad
\qquad Date

Chapter 5 Projectile Motion

3. Susan can row a boat at $4.0 \mathrm{~m} / \mathrm{s}$ in still water. While trying to row directly across a river from west to east, Susan is pulled by a current flowing southward at $3.0 \mathrm{~m} / \mathrm{s}$. How fast does Susan row relative to the shore?
4. A bird flies at a speed of $9.0 \mathrm{~m} / \mathrm{s}$ in still air. If the bird flies with a $12 \mathrm{~m} / \mathrm{s}$ crosswind blowing, how fast does it travel relative to the ground?
