\qquad
\qquad Date \qquad

Chapter 35 Electric Circuits

Ohm's Law and Parallel Circuits

The equivalent resistance for resistors in parallel can be found using the following equation.

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots+\frac{1}{R_{n}}
$$

Calculate the current in a $48-\mathrm{V}$ battery that powers three $15-\Omega$ resistors connected in parallel.

1. Read and Understand

What information are you given?
voltage $=V=48 \mathrm{~V}$
individual resistances: $R_{1}=R_{2}=R_{3}=15 \Omega$

2. Plan and Solve

What unknown are you trying to calculate?
current $=I=$?
What equation can you use to find the unknown?
Ohm's law: $V=I R$
For a parallel circuit, $V=I R_{\text {eq }}$, where $R_{\text {eq }}$ is the equivalent resistance.
Rearranging the equation gives you $I=\frac{V}{R_{\mathrm{eq}}}$.
First, find the equivalent resistance R_{eq}.
$\frac{1}{R_{e q}}=\frac{1}{15 \Omega}+\frac{1}{15 \Omega}+\frac{1}{15 \Omega}=\frac{1}{5 \Omega}$
$R_{e q}=5 \Omega$
Then substitute for V and $R_{\text {eq }}$ to solve for I.
$I=\frac{48 \mathrm{~V}}{5 \Omega}=9.6 \mathrm{~A}$

3. Look Back and Check

Is your answer reasonable?
Yes, a current of 9.6 A is reasonable, and the units are $\frac{\mathrm{V}}{\Omega^{\prime}}$, or A , which is reasonable.

Math Practice

On a separate sheet of paper, solve the following problems.

1. Calculate the current in a $9-V$ battery that powers three $6-\Omega$ resistors in parallel.

Chapter 35 Electric Circuits

2. Calculate the voltage impressed across a circuit in which three $1.5-\Omega$ resistors in parallel draw a current of 12 A .
3. Calculate the current in $12-\mathrm{V}$ battery that powers four $10-\Omega$ resistors in parallel.
