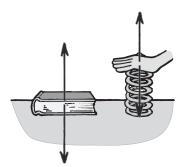
Name	Class	Date	
Chapter 2 M	Aechanical Equilibrium		
Exercise	es		
2.1 Force	(pages 13–14)		
1. A force is	a or a		
2. A force is needed to change the state of		of an	
	owing sentence true or false? If an ol liding until a force slows it down		
4. Define net	force.		
Match the appl force on the obj	ied forces on an object with the letter of ect.	the corresponding net	
Appli	ed Forces	Net Force	
5. 5 N	I to the right and 5 N to the left	a. 2 N to the left	
6. 4 N	I to the right and 6 N to the left	b. 2 N to the right	
7. 7 N	I to the right and 5 N to the left	c. 10 N to the right	
8. 6 N	I to the right and 4 N to the right	d. 0 N (no change in motion)	
9. Describe t	he forces that act on a rock at rest in	your hand.	
	letter that identifies the force acting d from a spring scale.	upward on an object	
a. gravity	b. equilibrium	b. equilibrium	
c. tension	d. weight		
	is an arrow that repre of a quantity.	sents the magnitude and	
12. Explain th	e difference between a vector quant	tity and a scalar quantity.	
	eside each vector quantity. Write S b	eside each scalar quantity.	
a.			
C. 1	force d. volum	le	


Chapter 2 Mechanical Equilibrium

2.2 Mechanical Equilibrium (page 16)

- **14.** Express the equilibrium rule in words.
- **15.** Express the equilibrium rule mathematically, and explain what the symbol in the rule means.
- **16.** Circle the letter that describes the forces acting on a suspended object at rest.
 - a. The forces acting upward on the object are greater than the forces acting downward on the object.
 - b. The forces acting upward on the object are less than the forces acting downward on the object.
 - c. The forces acting upward and downward on the object are balanced.
 - d. No forces are acting on the object.

2.3 Support Force (page 17)

- **17.** Identify the two forces acting on a book at rest on a table. State the direction of each force.
 - a. _____
 - b. _____
- 18. The ______ force is the upward force that balances the weight of an object on a surface. Another name for this force is the ______ force.

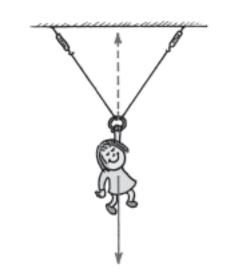
19. Look at the drawing above. Explain how the force of the table pushing up on the book is similar to what happens when the spring is compressed.

Class

Chapter 2 Mechanical Equilibrium

20. Circle the letter that describes an object at rest on a horizontal surface.

- a. The support force is equal to the object's weight.
- b. The support force is greater than the object's weight.
- c. The support force is less than the object's weight.


2.4 Equilibrium for Moving Objects (pages 18-19)

- **21.** If an object is moving at a ______ speed in a ______ speed in a ______ path, it is in a state of equilibrium.
- **22.** Is the following sentence true or false? If a desk is pushed at a constant speed across a horizontal floor, the force of friction must be equal in magnitude and opposite in direction to the pushing force on the desk.
- **23.** Objects at rest are said to be in ______ equilibrium.
- **24.** Objects moving at constant speed in a straight-line path are said to be in ______ equilibrium.

2.5 Vectors (pages 19-22)

- **25.** Suppose a gymnast with a weight of 300 N is suspended by a single vertical rope. What is the tension in the rope? ______
- **26.** Now suppose the same gymnast hangs from two vertical ropes. What are the tensions in the ropes? ______
- 27. Define resultant.
- 28. State the parallelogram rule.

29. The gymnast shown below is suspended from two non-vertical ropes. The solid vector represents the gymnast's weight. What does the dashed vector represent?

